Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Indian J Pathol Microbiol ; 2022 Sept; 65(3): 535-544
Article | IMSEAR | ID: sea-223326

ABSTRACT

Background: H. pylori-associated gastritis in patients from the high-altitude area of Ladakh showed severe gastritis, mucosal nodularity, atrophy, and cancer in comparison to those from North India. This study served to analyze if differences in the H. pylori virulence genotypes decide the extent of gastric mucosal inflammation. Methods: Fifty gastric biopsies each from patients with H. pylori-associated gastritis from Ladakh and a tertiary care center in North India were included. The presence of H. pylori strain was confirmed with Warthin starry stain and polymerase chain amplification of the H. pylori-specific 16S rRNA. The cagA, vacA s1, s2, and m1, m2 alleles, and dupA virulence genotypes were studied in all archival samples, followed by their histological correlations. Results: cagA (P 0.009) and vacAs1 m1 (P 0.009) genes were distinctly more in H. pylori strains colonizing the biopsies of North Indian patients. In contrast, the cagA -ve vacAs2 m2 strains were significantly more in H. pylori strain colonizing the biopsies from Ladakhi patients. dupA genotype was almost similarly present in strains from both regions. Among these, only cagA and dupA virulence genes were associated with severe mucosal neutrophilic activity and deep infiltration of H. pylori strains in North Indian patients. Conclusions: Differences in virulence genotypes of H. pylori in gastric biopsies from North Indian and Ladakhi patients were found not significant in deciding the severity of H. pylori-associated gastritis.

2.
Indian J Med Microbiol ; 2019 Sep; 37(3): 337-344
Article | IMSEAR | ID: sea-198910

ABSTRACT

Purpose: Helicobacter pylori causes various gastro-intestinal diseases. Antibiotic resistance to commonly used antibiotics for the treatment of H. pylori infection is the major cause for treatment failure. The aim of this study is to determine the antimicrobial susceptibility pattern for clarithromycin and levofloxacin and find the evolutionary relationship of the partial sequence of 23S rRNA and gyraseA gene of H. pylori by phylogenetic analysis. Materials and Methods: A total of 46 H. pylori strains were tested for clarithromycin and levofloxacin susceptibility pattern and phylogenetic tree were reconstructed by PhyML software. Results: In this study, we observed that only 6.5% of North-East Indian H. pylori strains were resistant for clarithromycin showing mutation at A2143G and T2182C positions of 23S rRNA gene. Resistance for levofloxacin was observed in 89.1% of the H. pylori strains showing mutations at asparagine to lysine at 87 and aspartic acid to glycine/tyrosine/asparagine at 91 positions of gyraseA gene. The phylogenetic tree of the partial sequence of 23S rRNA and gyraseA gene depicts that the North-East Indian strains falls in different cluster when compared to other countries. Conclusions: Resistance for clarithromycin was less in North-East Indian strains but high for levofloxacin indicating that first-line therapy may be best and effective for eradication of H. pylori in this region. This study is the first report that showed antibiotic susceptibility pattern for clarithromycin and levofloxacin by mutation analysis. By partial sequencing of 23s rRNA and gyraseA gene, we found that North-East Indian strains are geographically distinct.

SELECTION OF CITATIONS
SEARCH DETAIL